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ABSTRACT

Outliers in the X-direction or high leverage points are the latest known source of multicollinearity. Multicollinearity 
is a nonorthogonality of two or more explanatory variables in multiple regression models, which may have important 
influential impacts on interpreting a fitted regression model. In this paper, we performed Monte Carlo simulation 
studies to achieve two main objectives. The first objective was to study the effect of certain magnitude and percentage 
of high leverage points, which are two important issues in tending the high leverage points to be collinearity-enhancing 
observations, on the multicollinarity pattern of the data. The second objective was to investigate in which situations 
these points do make different degrees of multicollinearity, such as moderate or severe. According to the simulation 
results, high leverage points should be in large magnitude for at least two explanatory variables to guarantee that they 
are the cause of multicollinearity problems. We also proposed some practical Lower Bound (LB) and Upper Bound (UB) 
for High Leverage Collinearity Influential Measure (HLCIM) which is an essential measure in detecting the degree of 
multicollinearity. A well-known example is used to confirm the simulation results.

Keywords: Collinearity influential measure; collinearity influential observations; condition number; diagnostic Robust 
Generalized Potential (DRGP) method; high leverage points

ABSTRAK

Titik terpencil arah X atau titik tuasan tinggi adalah punca terkini bagi multikolinearan. Multikolinearan berlaku apabila 
dua atau lebih pembolehubah tak bersandaran dalam model regresi berganda tak berortogonal, yang mungkin memberi 
pengaruh penting ke atas interpretasi model regresi tersuai. Dalam kertas ini, kami menjalankan kajian simulasi Monte 
Carlo untuk mencapai dua objektif utama. Objektif pertama ialah untuk mengkaji kesan magnitud tertentu dan peratus 
titik tuasan tinggi ke atas pola data, yang mana keduanya adalah dua isu penting yang menjuruskan titik tuasan tinggi 
kepada cerapan yang mempertingkatkan kolinearan. Objektif kedua adalah untuk mengkaji situasi bagaimana titik 
tuasan ini menjadikan tahap multikolinearan berbeza, seperti sederhana atau tinggi. Berpandukan kepada keputusan 
simulasi, titik tuasan tinggi sepatutnya mempunyai magnitud yang besar bagi sekurang-kurannya dua pembolehubah 
takbersandaran untuk memastikan mereka adalah penyebab masalah multikolinearan. Kami juga mencadangkan Batas 
Bawah (LB) and Batas Atas (UB) bagi Ukuran Titik Tuasan Tinggi Berpengaruh Kolinearan (HLCIM) yang menjadi ukuran 
penting untuk mengesan tahap multikolinearan. Contoh terkenal digunakan untuk menentusahkan keputusan simulasi.

Kata kunci: Cerapan yang mempertingkatkan kolinearan; kaedah Potensi Teritlak Teguh Berdaignostik (DRGP); nombor 
kondisi; titik tuasan tinggi; ukuran kolinearan berpengaruh

in the population being sampled, model specification such 
as adding polynomial terms to the regression model, and 
an over determined model which is defined as a model 
with more explanatory variables than the number of 
observations. It is important to note that multicollinearity 
is a problem which exists in the data set, thus, there is 
no statistical test for its presence. However, a diagnostic 
method can replace a statistical test to indicate the existence 
and extent of multicollinearity in the data set. A very 
simple measure of multicollineariy is the examination of 
the correlation matrix of explanatory variables. Although, 
when more than two explanatory variables are involved in a 

INTRODUCTION

Multicollinearity or nonorthogonality is a near-linear 
dependency between two or more explanatory variables. Its 
presence causes difficulties in making prediction inferences 
and estimations as well as selecting an appropriate set of 
variables for the model. Unfortunately, in most regression 
applications the explanatory variables are not orthogonal. 
In such cases, any inferences based on the parameter 
estimations of the model become invalid. There are 
several sources of multicollinearity. Montgomery et al. 
(2001) noted that multicollinearity may be due to the data 
collection method employed, constraints on the model or 



1438 

near-linear dependence, there is no assurance that any of the 
pairwise correlation coefficients will be large (Montgomery 
et al. 2001). It is worth mentioning that collinearity may 
exist even if all the pairwise correlations are insignificant. 
However, the presence of pairwise correlations may be 
a significant sign for the existence of multicollinearity.  
 Marquardt (1970) proposed Variance Inflation Factor (VIF) 
as another popular diagnostic tool of multicollinearity. 
The VIF measures how much the variance of the estimated 
regression coefficients are inflated as compared to when 
the predictor variables are not linearly related. Moreover, 
a practical and useful multicollinearity diagnostic method 
such as Condition Number (CN) of X matrix could be 
obtained from the eigen structure analysis of cross-
products X matrix. Therefore, X́X matrix may be factored 
into p ordered eigenvectors and eigenvalues. The first 
eigenvector is a linear combination of the independent 
variables that explains the possible maximum variance. 
This eigenvector is associated with the largest eigenvalue. 
Subsequent eigenvectors maximize the remaining variance 
and are associated with smaller eigenvalues. An eigenvalue 
of zero indicates a perfect multicollinearity. Belsley et 
al. (1980) proposed a similar approach for diagnosing 
multicollinearity. The singular-value decomposition 
could be useful in identifying CN of X matrix. Belsley 
(1991) performed some experiments to discover whether 
the diagnostic methods could identify multicollinearity 
(or not) and which variables were also involved in the 
multicollinearity. He aimed to provide guidance on 
how high the condition number should be to indicate a 
multicollinearity problem in the data set.
 Kamruzzaman and Imon (2002) introduced a new 
source of multicollinearity, which is high leverage points, 
observations not only deviated from the same regression 
line as the other data but also fall far from the majority of 
explanatory variables in the data set (Hocking & Pendelton 
1983; Moller et al. 2005). They studied this new source 
of multicollinearity through simulated and real data sets. 
Utilizing the correlation matrix, they proved that the 
presence of multiple equal or unequal high leverage points 
causes severe multicollinearity. Unequal high leverage 
points may cause more multicollinearity problems than 
the equal high leverage cases. 
 According to Hadi (1988), these new sources 
of multicollinearity may be collinearity influential 
observations. Hadi (1988) noted that the collinearity 
influential observations are usually points with high 
leverages while all high leverage points are not collinearity 
influential observations. Sengupta and Behimasankaram 
(1997) pointed out that the weakness of this measure is in 
the lack of symmetry, which is due to the additive change 
in CN of X matrix. 
 Yet, little attention has been devoted to the role of the 
individual cases in collinearity of explanatory variables 
in the data set (Sengupta & Bhimasankaram 1997). 
Furthermore, there is a lack of investigation in the literature 
on high leverage points that cause multicollinearity 
problems. Hence, two important issues were investigated 

in this study. The first issue was to investigate in which 
conditions the high leverage points tend to become 
collinearity influential, specifically to be collinearity-
enhancing observations. The second issue was to examine 
the effect of the high leverage collinearity influential 
observation, which is a new source of multicollinearity, 
on the most applicable multicollinearity diagnostics such 
as CN of X matrix. In this way, we can investigate the 
degree of multicollinearity caused by the high leverage 
points. Unfortunately, there is no direct technique to 
determine in which situations high leverage points may 
cause multicollinearity and also how we can investigate 
the degrees of multicollinearity caused by these points. 
Insight is gained only by simulation experiences and by 
real data sets. 

MATERIALS AND METHODS

HIGH LEVERAGE COLLINEARITY INFLUENTIAL MEASURE

Regression model can be defined as:

 Y = Xβ + ε (1) 

where Y is an (n×1) vector of response or dependent 
variables, X is an (n×p) (n>p) matrix of predictors (collinear 
explanatory variables), β is a (p×1) vector of unknown 
finite parameters to be estimated and ε is an (n×1) vector 
of random errors. We let the jth column of the X matrix be 
denoted as Xj, therefore X = [X1, X2,…,Xp ]. Additionally, we 
defined multicollinearity in terms of the linear dependence 
of the columns of X, i.e., whereby the vectors of X1, X2 
,…,Xp are linearly dependent if there is a set of constants 
t1, t2,…,tp , that are not all zero, such as:

  (2)

 If (2) holds exactly, we face severe multicollinearity 
problem. However, the problem of moderate multicollinearity 
is said to exist when (2) holds approximately. 
 Marquardt (1970) proposed the Variance Inflation 
Factor (VIF) as multicollinearity diagnostic tool which is 
defined as follows:

        j = 1, …, k.  (3)

Where R2 is the coefficient determination of each of 
the explanatory variables when regressed on the other 
explanatory variables by using the ordinary least squares 
method. Any VIF value between 5 and 10 indicates that 
moderate multicollineriaty exists in the data set. Severe 
multicollinearity may happen when VIF exceeds its cutoff 
point 10.
 Condition Number (CN) of X́X matrix which is 
another useful multicollinearity diagnostic method could 
be obtained as follows. If eigenvalues are formed into 
Condition Indices (CI) for j = 1 to p and we also introduce 
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the eigenvalues of matrix X́X as λ1, λ2,…, λp
 
then the CI 

of matrix X́X is: 

  j =1, …, p   (4)

k is the largest CI, which is known as the CN of X́X  matrix. 
To make the condition indices comparable from one data 
set to another, the independent variables should first be 
scaled by dividing each of the explanatory variables with 
its standard deviation, to have the same length. Scaling will 
prevent the eigen analysis to be dependent on the variables 
units of measurements. Subsequently, they may also be 
centered by correcting X for its average . Nonetheless, 
the choice of centering is somehow arbitrary, since some 
authors argued that centering removes any collinearity 
that involves the intercept. By centering, the intercept will 
be removed from the regression model and consequently 
removing any collinearity which may exist between 
intercept and the other explanatory variables  (Belsley 
1984; Montgomery et al. 2001).
 Belsley et al. (1980) identified the singular-value 
decomposition of (n×p) X matrix as:

 X = UDV´, (5)

where U (the matrix which columns are the eigenvectors 
associated with the p non-zero eigenvalues of X́X)  is 
(n×p), V (the matrix of eigenvectors of  X́X) is (p×p), 
U´U = I, V´V = I,  and D is a (p×p) diagonal matrix with 
non-negative diagonal elements μj, j =1, 2, …, p which is 
called singular-values of X. They also defined the CI of 
the X matrix as:

  
j =1, …, p,  (6)

where η1, η2, …, ηp 
are the singular values of X matrix. It 

is noticeable that the largest value of kj and also ηj  can be 
defined as CN of matrix X́X  and X matrix, respectively. 
 Belsley (1991) recommended that CN between 10 and 
30 for X matrix be indicated as moderate multicollinearity 
while more than 30 results as severe multicollinearity. 
This was the first attempt to give meaning to the value of 
multicollinearity diagnostic. The author’s rule of thumb 
has been accepted as the standard in application. However, 
there were several limitations to the experiments such as 
the small number of experiments, which varied only by 
degree of multicollinearity and sample size. Many studies 
have been devoted to this issue (Mason & Perreault 1991; 
Rosen 1999; Schindler 1986; Stinnett 1993). It is worth 
mentioning that CN has been used in this article as CN of 
X matrix. 
 Hadi (1988) defined a measure for the influence of the 
ith row of X matrix on the condition index as:

   
i = 1, …, n.  (7)

where k(i)  can be computed from the eigenvalues of X(i) when the ith row of X matrix has been deleted. Hadi (1988)  

reported that a large negative value of δi indicates that 
group i is a collinearity-enhancing observation while a 
large positive δi value indicates a collinearity-reducing 
set. Nevertheless, there was no mention specifically as 
to how large the values of δi should be. In this respect 
the usage of Hadi’s measure is not practical because its 
cutoff-points are based on the researcher’s judgment on 
the magnitude of the δi.
 To overcome the lack of symmetry problem of Hadi’s 
measure, Sengupta and Behimasankaram (1997) proposed 
a new collinearity influential measure as:

   
i = 1, …, n.  (8)

 Although they didn’t propose any specific cutoff 
point for li, they introduced some easily computable lower 
bound and upper bound values for this new collinearity 
influential measure (Sengupta and Behimasankaram 
1997) . Following the idea of Sengupta & Bhimasankaram 
(1997), we proposed a new measure which is called the 
High Leverage Collinearity Influential Measure (HLCIM) 
and is defined as follows:

 
  

(9)

where D is the group of high leverage Collinearity 
Influential Observations. The HLCIM is used as an 
indicator to indicate whether high leverage points can 
cause multicollinearity or not in the data set. Monte Carlo 
simulations may be a good approach to define the cutoff 
point for the HLCIM. It is important to note that high 
leverage points can hide and induce multicollinearity 
pattern in two different situations. The first situation 

is when >1 and k(D) >k, then log ( ) > 0 which 

result in the deletion of the high leverage points. 
Consequently, the degree of multicollinearity increases 
due to the characteristics of high leverages which hide 
the multicollinearity pattern. In this situation, the high 
leverage points are referred as collinearity-reducing 
observation. Otherwise, the deletion of high leverage 
points may reduce the degree of multicollinearity. Thus, 
in this situation the high leverage points are referred 
as collinearity-enhancing observation and satisfy this 

inequality; 0< )<1 and k(D)
 

then log( ) <0. 

HIGH LEVERAGE DIAGNOSTICS METHODS

A traditional measure of the outlyingness of an observation 
Xi with respect to the sample is the Three-Sigma edit rule, 
which is defined as follows:

 
  

(10)

where  is the mean and s is the standard deviation of 
explanatory variables. The robust version of (10) is:
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  (11)

where Med(X) is Median(X) and Mad(X) = 1.4826 (Median 
|Xi – median (xi)| is the normalized median absolute 
deviation about the Median(X). T and T' are approximately 
equal, when the distribution of the data is normal. The 
observation which has absolute value of T or T' more than 
3 is considered as an outlier (Maronna et al. 2006). 
 This method can be used in univariate regression 
models as a diagnostics rule to detect high leverage points. 
Since in most of the regression analysis, more than one 
explanatory variable exists in the model, investigating 
some useful methods in these cases seems to be necessary. 
One of the handiest methods can be defined as the hat 
matrix. 
 Hat matrix, which is traditionally used as a measure 
of leverage points in regression analysis, is defined as W 
= X(XT X)-1 XT. The most widely used cutoff point of the 
hat matrix is the twice-the-mean-rule (2k/n) by Hoaglin 
&Welsch (1978). However, Hadi (1992) explained that the 
hat matrix might fail to identify the high leverage points 
due to the effect of high leverage points in the leverage 
structure. So, he introduced another diagnostic tool as 
follows:

  (12)

where  is the diagonal element of 
W and the ith, diagonal potential pii can be defined as

 
 xi where X(i) is the data matrix X without 

the ith row. He proposed a cutoff point for potential values 
pii as Median(pii) +c Mad(pii) (Mad-cutoff point) and c can 
be taken as constant values of 2 or 3. Still, this method was 
unable to detect all of the high leverage points. 
 Imon (2002) introduced another diagnostic tool as 
generalized potentials for the whole data set, which is:

  (13)

where D is a deleted set, meaning any observations which 
is suspected as outliers and R is the remaining set from 
observations after deleting d < (n-p) therefore containing 
(n-d) cases. Because there isn’t any finite upper bound for 
pii

* ’s and the theoretical distribution of them are not easily 
found, he used a Mad-cutoff point for the generalized 
potential as well. 
 Recently, Habshah et al. (2009) developed a Diagnostic 
Robust Generalized Potential (DRGP) to determine outlying 
points in multivariate data set by utilizing the Robust 
Mahalanobis Distance (RMD) based on Minimum Volume 
Ellipsoid (MVE). We refer this method as the DRGP (MVE). 
The set D (deletion set) in generalized potentials method in 
(13) is defined based on the points which RMD-MVE exceeds 

Median (RMD-MVE) +3Mad (RMD-MVE). Rousseeuw 
(1985) introduced RMD-MVE as: 

 for i = 1,…, n, 
(14)

where TR (X) and CR (X) are robust locations and shape 
estimates of the MVE. Then, generalized potential statistics 
with the Mad-cutoff point has been utilized to check 
whether all members of the deletion set have potentially 
high leverage or not. The merit of this method is in 
swamping less low leverages as high leverage points in 
the data set. Hence, this method has been utilized in the 
following chapter as a diagnostic method to define high 
leverage points. 

RESULTS AND DISCUSSION

Before proceeding to the simulation study, the effect of 
high leverage points in multicollinearity pattern of the data 
will be investigated.

THE EFFECT OF HIGH LEVERAGE POINTS ON 
MULTICOLLINEARITY

 In order to explore the effect of high leverage points 
on multicolllinearity pattern of the data, a non-collinear 
data set which was introduced by Neter et al. (2004) is 
considered. Commercial Properties data containing 81 
observations was taken from the suburban commercial 
properties. The response variable was rental rates which 
were regressed to the age (X1), operating expenses and taxes 
(X2) and vacancy rates (X3). This data set contained 19 high 
leverage points (observations 1, 2, 3, 6, 7, 8, 17, 21, 26, 
29, 37, 45, 53, 54, 58, 61, 62, 72 and 79). As already been 
mentioned, Hadi (1988) pointed out that, influential points 
are usually the points with high leverages. It was also noted 
that not all high leverage points are collinearity influential 
observations and vice- versa. We will show in Figure 1 and 
Table 1 that these high leverage points are not collinearity 
influential observations. Hence, the data was modified in 
three situations; to investigate the effect of adding one high 
leverage to one explanatory, one high leverage to each of 
two explanatory and one high leverage to each of three 
explanatory variables, in inducing collinearity. To create 
high leverage collinearity-enhancing observations, the data 
is modified accordingly such that the first observation of 
each explanatory variable is replaced with 300 for each of 
the three situations.
 Figure 1(a), (b), (c) and (d) display the scatter plot 
matrix of the original data, modified by a new high 
leverage in X1 , modified by a new high leverage in X1 and 
X2 , modified by a new high leverage in X1, X2 and X3 for 
the Commercial Properties data set. Let us first focus our 
attention to the original data in Figure 1(a). We can see 
from this figure that there isn’t any collinearity between 
explanatory variables. Figure 1(b) illustrates the effect of 
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this new added high leverage points in X1. It is interesting 
to point out that this high leverage point couldn’t make 
collinearity between explanatory variables. Figure 1(c) 
and Figure 1(d) suggest that the explanatory variables have 
become collinear. 
 The collinearity diagnostic methods such as correlation 
matrix, variance inflation factor and condition indices of 
the normalized explanatory variables (transformed the 
explanatory variables to Z-scores) for the original and the 
modified data sets are presented in Table 1. The result of 
Table 1 signifies that, although the original data set has 
19 high leverage points but these leverage points did not 
cause multicollinearity problem. This result was supported 

by Figure 1(a) where the explanatory variables were 
not correlated. It can be observed from Table 1 that for 
modified data whereby one high leverage point is added 
to X1, none of the diagnostic methods reveal collinearity. 
On the other hand, when high leverages are added to two 
and all three explanatory variables, these high leverages 
not only induce multicollinearity but they also change the 
degree of multicollinearity from moderate to strong. Thus, 
the new high leverage points are collinearity-enhancing 
observations. Furthermore, when we increase the number 
of explanatory variables with high leverage collinearity-
enhancing observations, they may enhance the degree of 
collinearity between explanatory variables as well.

(a)

(c)

(b)

(d)

FIGURE 1. Scatter plot matrix of original (a), modified by a new high leverage in X1 (b) modified by a new high leverage in X1 and 
X2 (c), modified by a new high leverage in X1 , X2 and X3 (d) Commercial Properties data set

TABLE 1. Collinearity diagnostics of the original and modified commercial properties data set

Diagnostics Status 1 2 3
Pearson correlation coefficient original data

New High leverage in X1
New High leverage in X1 and X2
New High leverage in X1 , X2 and X3

r12= 0.39
r12= -0.13
r12= 0.98
r12=0.98

r13= -0.25
r13= -0.00
r13= -0.00
r13= 0.98

r23= -0.38
r23= -0.38
r23= 0.02
r23=1.00

VIF > 5 original data
New High leverage in X1
New High leverage in X1 and X2
New High leverage in X1 , X2 and X3

1.20
1.02

29.77
29.41

1.31
1.19

29.78
184.71

1.19
1.17
1.01

157.07
Condition index   > 10 original data

New High leverage in X1
New High leverage in X1 and X2
New High leverage in X1 , X2 and X3

1
1
1
1

1.50
1.18
1.41

11.14

1.72
1.53

10.82
31.28



1442 

MONTE CARLO SIMULATION STUDY

A Monte Carlo simulation study is designed to achieve 
four objectives. Two different simulation designs 
were performed. In both simulation, the first 100(1-α) 
percent observations of each explanatory variables were 
generated from a standard normal distribution. We refer 
to this generated data as the clean explanatory variables. 
The remaining 100 α percent of the observations 
were contaminated explanatory variables. To generate 
contaminated explanatory variables, a Robust Distance (RD) 
for each of the clean explanatory variable was computed in 
the first step. In this paper, we call |Median(x) +3Mad(x)| 
as Robust Distance (RD), which is approximately equal to 
3 for standard normal distribution. For the second step, the 
RD value was multiplied with different multipliers which 
are called magnitude of contamination (MC) to produce 
high leverage points. It is worth mentioning that equal MCs 
for different explanatory variables have been considered to 
ease the computation. In each simulation run, there were 
10,000 replications. A real well- referred data set is applied 
to verify the simulation results.

High leverage collinearity influential observations in 
multiple linear model with three explanatory variables and 
n=100   A model with three explanatory variables with a 
moderate sample size of 100 and the MC values from 1 to 4 
were considered. The percentage of contamination in each 
explanatory variable was 5, 10, 15, 20 and 25 percent.
 The first objective of this simulation study is 
to determine at which magnitude and percentage of 
contamination will the contamination points be detected 
as high leverage points in situations where contamination 
exists in one, two and all three explanatory variables. 
 Table 2 illustrates the percentage of multiple high 
leverage points detected by the DRGP (MVE) at different 
magnitudes and percentage of contaminations. The results 
based on contaminated explanatory variable X1, variables 
X1 and X2, and X1, X2 and X3 are shown on the Table 2. It 
can be observed from Table 2 that when the magnitude 
of contamination (MC) is 3 or more, and contamination 
exists in one, two or three explanatory variables, the 
DRGP (MVE) detects these points as high leverage points 
irrespective to the percentage of high leverage points. It 

is worth mentioning here that by increasing the number 
of contaminated explanatory variables in the model, 
contaminated observations become high leverage points 
in a smaller value of MC. For instance, in Table 2, when we 
had one contaminated explanatory variable in the model, 
it can be seen that the MC value equal to almost 3, making 
the contaminated points multiple high leverage points. 
Subsequently, MC equal to 2 is enough to make two and 
more contaminated explanatory variables to be multiple 
high leverage points. Hence, it is obvious that any points 
with large MC in any explanatory variables are detected 
as high leverage points. Whilst, it is noticeable that any 
high leverage points detected by DRGP (MVE) should not 
necessarily have large MC. 
 The second objective is to determine whether the 
high leverage points which exist in one or all explanatory 
variables were collinearity-enhancing observations. Table 
3 presents the effect of different levels of magnitude and 
different percentage of contamination on HLCIM  and CN in 
three explanatory variables model, where contamination 
is in one explanatory variable. The MC value displayed in 
Table 3 starts from 3 onwards and does not include MC 
less than 3 because the result of Table 2 had suggested 
that high leverage points in one explanatory variable are 
correctly identified for value of MC equal and greater than 
3. Here, we wanted to investigate by means of HLCIM and 
condition number CN of X matrix whether high leverage 
points in one explanatory variable were collinearity-
enhancing observation. The small and positive values 
of all HLCIM in Table 3 show that when high leverage 
points are in one explanatory variable, these points may 
not cause multicollinearity. This result is in agreement 
with the small value of condition numbers (more than 
the 10 cutoff point for moderate multicollinearity), which 
suggests that the high leverage points are not collinearity-
enhancing observations. Moreover, in this situation, if 
the percentage and magnitudes of high leverage points 
increases, the HLCIM doesn’t change drastically. Thus, it is 
obvious that the high leverage points can’t be collinearity-
enhancing observations when high leverage points exist 
in one explanatory variable in three explanatory variables 
model.

TABLE 2. The percentage of multiple high leverage points detected by DRGP (MVE) in three explanatory variables model, n=100

CEV α
MC

CEV α
MC

CEV α
MC

1 2 3 4 1 2 3 4 1 2 3 4
DRGP(MVE) DRGP(MVE) DRGP(MVE)

5 2.78 5 5 5 5 4.74 5 5 5 5 5 5 5 5
10 3.48 10 10 10 X1 10 8.3 10 10 10 X1 10 10 10 10 10

X1 15 1.4 15 15 15 X2 15 18.72 15 15 15 X2 15 14.78 15 15 15
20 2.3 19.77 20 20 20 5.8 20 20 20 X3 20 19.67 20 20 20
25 2.31 24.91 25 25 25 2.75 25 25 25 25 24.87 25 25 25

           
CEV# Contaminated Explanatory Variable, MC# Magnitude of Contamination



  1443

 The third objective is to study the effect of MC and 
percentage of high leverage points on HLCIM and CN 
and subsequently propose cutoff points for the HLCIM 
in the certain number of sample size (100) and number 
of explanatory variables (3) so that it can be used as an 
indicator of whether the degrees of multicollinearity caused 
by collinearity-influential observations were moderate or 
severe.
 Table 4 exemplifies the HLCIM and CN of three 
variables model when high leverage points are in all 
three explanatory variables (X1, X2 and X3). Here, we also 
wanted to investigate the effect of different magnitudes 
and different percentage of contamination on the value of 
HLCIM and CN when contamination is in all explanatory 
variables in three explanatory models with a sample size 
equals to 100. Following the results of Table 2, only values 
of MC with magnitude of two are presented in Table 4, 
as this contamination points are high leverage points. It 
can be observed from Table 4, when high leverage points 
exist in all three explanatory variables, by increasing the 
percentage of high leverage points and magnitudes of 

MC, the value of log , or HLCIM starts from negative 

and become larger. In this situation, the value of CN also 
becomes larger. 
 From these results we propose to define the Lower 
Bound (LB) value of the HLCIM when the corresponding 
CN becomes 10. This LB can be used as an indicator 
of moderate multicollinearity. The Upper Bound (UB) 
value of the HLCIM is defined when the corresponding CN 
becomes 30 and it can be used as an indicator of severe 
multicollinearity. Computing the average of the all LB 
and UB values of HLCIM  for different percentage of high 
leverage points, result in the values of -0.90 and -1.34 as 
LB and UB values of HLCIM  respectively. Thus, in three 
contaminated explanatory variables model with MC more 
than 2 and a sample size equaling to 100, negative value 
of HLCIM which is more than 0.94 indicates moderate 
multicollinearity, and when it is negative and more than 
1.34 indicates that severe multicollinearity exists in the 
data set. In this situation the high leverage points will 
become high leverage collinearity-enhancing observations 

as well. It can be seen that by increasing the percentage 
of high leverage points, the high leverage collinearity-
enhancing observations can be detected at a smaller MC, 
and vice-versa. For example, when all three explanatory 
variables have 5 percent high leverage with the MC more 
than 8, these high leverages can cause multicollinearity, 
while the high leverage points will be the high leverage 
collinearity-enhancing in 15 percent high leverage with a 
magnitude of contamination more than 5. 
 Figure 2 presents the effect of MC on CN. By looking at 
Table 4 and Figure 2, 5 percent of high leverage points with 
an average magnitude more than 8 in three contaminated 
explanatory variables will be collinearity-enhancing 
observations,which bring moderate multicollinearity 
problems, and if the magnitude of contamination is 
more than 24, these high leverage collinearity enhancing 
observations will bring severe multicollinearity in the data 
set. Similar results can be drawn for different percentage 
of high leverage points. The results also pointed out that 
the CN values become 10 at the very least which brings to 
moderate multicollinearity and make these high leverage 
points collinearity-enhancing observations for 10, 15, 20 
and 25 percentage of high leverage points corresponding 
to MC values which are more than 6, 5, 4 and between 
3 and 4, respectively. Accordingly, the values of MC 
approximately more than 17, 14, 12, and 11 for 10, 15, 
20 and 25 percent high leverage points can cause severe 
multicollinearity. 
 The findings are summarized as follows. In the 
situation with three contaminated explanatory variables 
model, sample size equals to 100 and the contaminated 
points with MC more than 2, these points are detected as 
high leverage points. If the HLCIM is negative and more 
than 0.90 (LB), these points are detected as high leverage 
collinearity-enhancing observations which make moderate 
multicollinearity. On the other hand, the negative value of 
HLCIM which is more than 1.34 indicates the existence of 
severe multicollinearity between explanatory variables. 

High leverage collinearity- enhancing observations in 
multiple linear model with more than three explanatory 
variables and various sample size   The objective of this 
simulation study is to propose cutoff points for  HLCIM to 

TABLE 3. HLCIM and CN of three explanatory variables model when contamination is in one explanatory variable (X1), n=100

 
α

(MC)
3 4 5 6 7 8 9

HLCIM CN HLCIM CN HLCIM CN HLCIM CN HLCIM CN HLCIM CN HLCIM CN

5 0.081 1.17 0.081 1.18 0.082 1.18 0.08 1.17 0.078 1.17 0.08 1.18 0.082 1.17
10 0.079 1.17 0.081 1.17 0.080 1.170 0.083 1.17 0.082 1.17 0.083 1.17 0.079 1.18
15 0.082 1.18 0.08 1.17 0.080 1.170 0.078 1.17 0.081 1.17 0.082 1.18 0.08 1.18
20 0.081 1.17 0.081 1.17 0.083 1.18 0.083 1.17 0.081 1.18 0.081 1.17 0.082 1.17
25 0.08 1.18 0.082 1.17 0.083 1.18 0.08 1.17 0.081 1.17 0.078 1.18 0.08 1.17

HLCIM # High Leverage Collinearity- Influential Measure (log  ) CN# Condition Number of X matrix, MC# Magnitude of Contamination
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indicate the degree of multicollinearity at different sample 
sizes and different number of explanatory variables. In 
this simulation study, we considered different sample 
sizes that varied from 20, 100, 500 and 1000, and different 
number of explanatory variables, that is 3, 5 and 10. 
The maximum number of explanatory variables and 
sample sizes were chosen to be 10 and 1,000 because in 
real situation, we seldom encounter real data sets with 
more than these considered values. The same processes 
of simulation experiments as explained before for the 
three explanatory variables and sample size 100, were 
performed. Table 5 presents the LB and UB values of the  
HLCIM for different sample sizes and different number 
of explanatory variables. By increasing the number of 
collinear explanatory variables, the values of LB and UB 
in different sample sizes decreased. It is important to 
mention here that it is not an easy task to obtain the exact 
LB and UB values of the HLCIM. In this respect, we propose 
to use the extrapolation technique to obtain the values of 
LB and UB for different sample sizes between 20 and 1000 
and explanatory variables between 2 and 10. 

NUMERICAL EXAMPLE

A well-known data set, which is referred to for diagnosing 
influential observations is the Hawkins et al. (1984) 
data set. Hawkins et al. (1984) constructed an artificial 
three-predictor data set containing 75 observations with 
14 influential observations, ten high leverage outliers 
(cases 1–10) and four high leverage points (cases 11–14). 
The D Group consists of these 14 high leverage points 
which is considered as suspected group of high leverage 
collinearity-enhancing observation. This data set contains 
18.67 percent high leverage points (between 15 and 20 
percent). Table 6 presents the values of the Diagnostic 
Robust Generalized Potential (DRGP-MVE) and MC for all 
three explanatory variables for the first 14 observations 
in this data set. The results of Table 6 signify these points 
as multiple high leverage points. To compute MC, first we 
needed to compute RD for a clean data set (the data set 
without these 14 multiple high leverage points which were 
normalized to have mean zero and standard deviation 1). 
The RD for each of the three explanatory variables X1, X2, 
and X3 were equal to 3.73, 3.93 and 4.21, respectively. 

FIGURE 2. Condition Number (CN) against Magnitude of Contamination (MC) for three contaminated 
explanatory variables, n=100    

C
on
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n 
N

um
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r

TABLE. 5 LB and UB of HLCIM for different sample sizes and explanatory variables 

explanatory 
variables no.

sample size
20 100 500 1000

LB UB LB UB LB UB LB UB

3 -0.88 -1.30 -0.90 -1.34 -0.99 -1.44 -1.02 -1.58
5 -0.68 -1.17 -0.87 -1.30 -0.94 -1.42 -0.96 -1.49
10 -0.37 -0.85 -0.77 -1.25 -0.90 -1.37 -0.92 -1.41

LB# Lower Bound of HLCIM , UB# Upper Bound of  HLCIM,  HLCIM# High Leverage Collinearity Influential Measure (log  ),
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Thus, the MC was obtained by dividing the high leverage 
points in each explanatory variable to its corresponding RD. 
The average value of MC for X1, X2 and X3 were equal to 
2.81, 5.65 and 7.44, respectively. The average value of MC 
for the three explanatory variables was equal to 5.30, which 
was more than two for all three explanatory variables. Thus, 
it was another evidence to be sure that the contaminated 
points of this data were multiple high leverage points. To 
decide if multiple high leverage points may be the source 
of multicollinearity problems in this data set, the condition 
number of X matrix for the data set with and without high 
leverage points needed to be computed, and they were 
12.42 and 1.18, respectively. Thus, it is obvious that the 
multicollinearity was due to the multiple high leverage 
points. To decide the degrees of multicollinearity, the 
simulation results in Table 5 had to be extrapolated. The 
LB and UB values of HLCIM when n = 75 and p=3 should be 
computed. These can be done easily by the extrapolation 
of the results for n = 20 and 100 in p = 3. Thus, the LB 
and the UB when n = 75 and p = 3 were -0.89 and -1.31 

respectively. The computation of log  gave the value 

of  HLCIM equaling to -1.02, where it lies between these 
two ranges which suggested a moderate multicollinearity. 
This result can be confirmed from the value of CN of the X 
matrix for the whole data set, which was equal to 12.42. 
The result of the simulation study confirmed that this data 
set had a moderate multicollinearty problem, which was 
due to the multiple high leverage points. Thus, the average 
contamination magnitude of 5.3 and 18.67 percent high 
leverage points may cause moderate multicollinearity in 
this data set.

CONCLUSION

Multicollinearity causes major interpretive problems 
in regression analysis, such as wrong sign problems, 
produces unstable and inconsistent estimates of parameters 
and insignificant regression coefficients, where in fact 
it is significant. Thus, it is very essential to investigate 
and detect the presence of multicollinearity to reduce its 
destructive effects on the regression estimates. It is now 
evident that high leverage points are a new prime source of 
multicollinearity. However, little work has been explored 
in this area. The main focus of this paper is to study the 
effect of different magnitude and different percentage 
of high leverage points on multicollinearity problems. 
In addition to that we investigated that in which extent; 
these high leverage points can cause multicollinearity. 
This paper also attempts to develop and introduce reliable 
cutoff points for High Leverage Collinearity Influential 
Measure (HLCIM ) to diagnose different degrees of 
multicollinearity. Monte Carlo simulations were carried 
out to study these aims. The simulation indicated that there 
were four important factors that make high leverage points 
to be high leverage collinearity-enhancing observations. 
The factors are: the number of sample size, the number 
of contaminated explanatory variables, the magnitude 
of contamination and the percentage of high leverage 
points. It is interesting to note that the contaminated 
points, which exist in only one explanatory variable, 
cannot cause multicollinearity problems. High leverage 
collinearity-enhancing observations are those points in 
which their values are in large magnitude for at least two 
explanatory variables. The results also signify that when 
the high leverage points are in the same observations of 
two explanatory variables, by increasing the magnitude 
and the percentage of high leverage points, these 

TABLE 6. Diagnostic Robust Generalized Potential (DRGP) (MVE) and 
MC for Hawkins–Bradu–Kass data set

index DRGP (MVE)(0.21) MC for X1 MC for X2 MC for X3

1 13.44 2.71 4.98 6.71
2 14.18 2.55 5.21 6.86
3 17.00 2.87 5.13 7.35
4 17.84 2.66 5.47 7.52
5 16.86 2.76 5.36 7.38
6 14.06 2.90 5.19 6.93
7 13.81 2.82 5.31 6.90
8 14.26 2.66 4.98 6.83
9 17.22 2.60 5.26 7.35
10 16.83 2.50 5.01 7.19
11 21.56 2.95 6.10 8.30
12 25.47 2.18 3.83 6.12
13 18.29 2.18 4.33 5.62
14 17.99 2.00 5.66 5.62
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points tend to be high leverage collinearity-enhancing 
observations. Moreover, by increasing the percentage 
of high leverage points, the high leverage collinearity-
enhancing observations can be detected at smaller MCs. The 
simulation experiments also show that the Lower Bound 
and Upper Bound of  HLCIM corresponding to moderate and 
severe multicollinearity equals approximately to -0.90 and 
-1.34 in sample size equal to 100. By increasing the number 
of contaminated explanatory variables for fixed sample 
sizes, the value of LB and UB of HLCIM decreases. These 
values increase by increasing the number of sample sizes 
for fixed contaminated explanatory variables. Since the 
cutoff values for HLCIM that indicated moderate and severe 
multicollinearity were not easy to obtain, as an alternative, 
the extrapolation technique, which was acquired from the 
simulation results of Table 5 is recommended to compute 
LB and UB of HLCIM for a specific number of sample size 
and number of contaminated explanatory variables.
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